Espaces vectoriels normés [3/3]

EL BAKKALI EL KADI Taha

College of Computing UM6P

Définition 1

Une partie A de E est dite compacte si toute suite d'éléments de A possède au moins une valeur d'adhérence dans A.

Remarque: La définition d'une partie compacte s'appuie sur la convergence de suites. Elle dépend donc de la norme utilisée.

Exercice 2: Soit F un sous-espace vectoriel de E, et A une partie de F. Montrer que A est un compact de E si, et seulement si, A est un compact de F.

Proposition 3

Une suite à valeurs dans une partie compacte est convergente si, et seulement si, elle admet une unique valeur d'adhérence.

Proposition 4

Toute partie compacte est fermée et bornée.

Remarque: Si une suite (u_n) est telle qu'il existe $\alpha > 0$ vérifiant :

$$\forall (n,p) \in \mathbb{N}^2, \ n \neq p \implies ||u_n - u_p|| \geq \alpha,$$

alors (u_n) ne possède aucune sous-suite convergente. Ainsi, pour montrer qu'une partie A n'est pas compacte, il suffit d'exhiber une suite d'éléments de A vérifiant la propriété ci-dessus.

Exercice 5: Soit $E = \mathbb{R}[X]$, muni de la norme

$$||P|| = \sum_{k=0}^{n} |a_k|$$
 si $P(X) = \sum_{k=0}^{n} a_k X^k$.

Notons $A = \overline{B}(0,1)$ la boule unité fermée de E.

Justifier que A est une partie fermée et bornée, n'est pas compacte.

Définition 6

On dit que A est **BL-compact** si, pour toute famille $(U_i)_{i \in I}$ d'ouverts de E telle que $K \subset \bigcup_{i \in I} U_i$, il existe un sous-ensemble fini $J \subset I$ tel que:

$$A\subset\bigcup_{i\in J}U_i$$
.

Autrement dit, de tout recouvrement par des ouverts on peut extraire un recouvrement fini.

Proposition 7

Si A est **BL-compact** de E, alors A est compact de E.

Remarque: La reciproque est aussi vraie (Exercice du TD).

Proposition 8

Toute partie fermée d'une partie compacte est compacte

Proposition 9

Soient E_1, \ldots, E_p des espaces vectoriels normés. Si A_1, \ldots, A_p sont des parties compactes de E_1, \ldots, E_p respectivement, alors le produit $A_1 \times \cdots \times A_p$ est une partie compacte de l'espace produit $E_1 \times \cdots \times E_p$ (muni de la norme produit).

Exercice 10: Montrer que, dans $(\mathbb{K}^r, \|\cdot\|_{\infty})$, une partie est compacte si et seulement si elle est fermée et bornée.

Exercice 11: Montrer que l'ensemble suivant est une partie compacte de \mathbb{R}^n :

$$\mathcal{K} = \Big\{ (\lambda_1, \dots, \lambda_n) \in (\mathbb{R}^+)^n \ \big| \ \lambda_1 + \dots + \lambda_n = 1 \Big\}.$$

Proposition 12

L'image d'un compact par une application continue est un compact

Remarque: Cette proposition entraı̂ne que l'image par f de tout fermé de E (où E est compact) est un fermé (une application vérifiant cette propriété est dite fermée). Ceci est faux en général.

Proposition 13

Soit $f: E \to F$ une application continue et bijective. Si E est compact, alors $f^{-1}: F \to E$ est continue. Autrement dit, f est un homéomorphisme.

Remarque: Pour toute fonction continue et bijective $f: I \to J$, où I, J sont des intervalles de \mathbb{R} , l'application réciproque f^{-1} est continue.

Proposition 14

Soit A une partie compacte non vide, toute application continue $f: A \to \mathbb{R}$ est bornée et atteint ses bornes : il existe $x_1, x_2 \in A$ tels que $f(x_1) = \min_{x \in A} f(x)$ et $f(x_2) = \max_{x \in A} f(x)$.

Exemple 15: Si A est un compact non vide de E, alors il existe $a \in A$, tq d(x, A) = ||x - a||.

Exemple 16: Si A et B sont deux compacts non vide de E, alors il existe $a \in A$ et $b \in B$ tq d(A, B) = ||a - b||.

Exercice 17: Considérons la fonction $g: \mathbb{R}^2 \to \mathbb{R}$ définie par

$$g(x,y) = \frac{e^{x^2+y^2}}{1+x^2+y^2}.$$

1 Montrer que pour tout $a \in \mathbb{R}$, il existe R > 0 tel que :

$$\forall (x,y) \in \mathbb{R}^2 \setminus B(0,R), \quad |f(x,y)| > a.$$

2 Justifier que *g* possède un minimum global.

Proposition 18

Toute application continue sur un compacte est uniformément continue.

Compacité en dimension finie

Compacité en dimension finie

Proposition 19

Dans un espace vectoriel de dimension finie, toute suite bornée possède au moins une valeur d'adhérence, i.e. admet au moins une sous suite convergente.

Proposition 20

Les parties compactes d'un espace vectoriel de dimension finie sont ses parties fermées bornées.

Proposition 21

Dans un espace vectoriel normé, tout sous-espace vectoriel de dimension finie est un fermé.

Equivalence des normes en dimension finie

Equivalence des normes en dimension finie

Proposition 22

Dans un espace de dimension finie, toutes les normes sont équivalentes.

Définition 23

On dit que $(u_n)_{n\in\mathbb{N}}$ est une suite de Cauchy si

$$\forall \varepsilon > 0, \ \exists N \in \mathbb{N}, \ \forall p \geq N, \ \forall q \geq N, \ ||u_p - u_q|| < \varepsilon.$$

On dit qu'un evn E est un espace de banach, si toute suite de cauchy de E est convegente.

Proposition 24

- Une suite convergente est une suite de Cauchy.
- 2 Une suite de Cauchy est bornée.
- Une suite de cauchy qui admet une v.a est convergente.

Proposition 25

 \mathbb{R} est un espace de banach.

Proposition 26

 \mathbb{R}^n est un espace de banach.

Proposition 27

Tout evn de dimension finie est un espace de banach.

Proposition 28

On considère X un ensemble non vide et $\mathcal{B}(X,E)$ l'espace vectoriel des fonctions bornées, définies sur X et à valeurs dans E. On munit $\mathcal{B}(X,E)$ de la norme $\|\cdot\|_{\infty}$ définie par

$$\forall f \in \mathcal{B}(X, E), \quad \|f\|_{\infty} = \sup_{x \in X} \|f(x)\|.$$

Si l'espace vectoriel normé $(E, \|\cdot\|)$ est un espace de banach, alors l'espace $(\mathcal{B}(X, E), \|\cdot\|_{\infty})$ est aussi de banach.

Proposition 29

Soit E un evn de banach et une application $f: E \to E$ contractante, c'est-à-dire qu'il existe un réel $k \in [0,1[$ vérifiant

$$\forall (x,y) \in E^2, \quad ||f(x) - f(y)|| \le k ||x - y||.$$

Alors f admet un unique point fixe.

Espaces connexes par arcs

Espaces connexes par arcs

Définition 30

On appelle chemin de A (une partie non vide de E) toute application continue $\gamma:[0,1]\to E$ telle que $\gamma([0,1])\subset A$. L'image $\gamma([0,1])$ du chemin s'appelle un arc, $\gamma(0)$ l'origine, $\gamma(1)$ son extrémité.

Définition 31

On dit que A (une partie non vide de E) est connexe par arcs si pour tout $(a,b) \in A^2$, il existe un arc inclus dans A d'origine a et d'extrémité b.

<u>Exemple 32:</u> Toute partie convexe non vide d'un espace vectoriel normé est connexe par arcs.

Espaces connexes par arcs

Proposition 33

Soit A une partie non vide de E et $f: E \to E$ continue. Si A est connexe par arcs dans E alors f(A) est connexe par arcs dans F.

Exemple 33: $GL_n(R)$ n'est pas connexe par arcs.

Proposition 34

Soit A une partie non vide de E.

La relation sur A² définie par

$$\forall x, y \in A, \ x \sim_A y \iff \exists \gamma \in \mathcal{C}([0,1], A), \ \begin{cases} \gamma(0) = x \\ \gamma(1) = y \end{cases}$$

est une relation d'équivalence.

2 Les classes d'équivalence pour \sim_A sont connexes par arcs. On appelle ces classes composantes connexes par arcs.